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Abstract. As we demonstrate in a process independent way, in a non-linear parameterization of the scalar
sector of the standard model the Dyson summation of the Higgs self-energy can be performed without
violating the Ward identities. This implies also the Goldstone boson equivalence theorem, in the limited
range of its validity in effective field theories. This proves an earlier conjecture of Valencia and Willenbrock.
Furthermore, the full Higgs propagator is independent of the gauge parameters. These results are consistent
with the extension of the “gauge flip” formalism for the construction of gauge invariant classes of Feynman
diagrams to loop diagrams. In a non-linear parameterization of a 2-Higgs doublet model, the consistent
Dyson summation is possible for all neutral Higgs bosons, but not for the charged scalars. Explicit examples
of the equivalence theorem are discussed both in the minimal standard model and a 2-Higgs doublet model.

PACS. 11.15.Ex, 12.15.-y, 14.80.Cp, 11.15.Bt

1 Introduction

Despite the phenomenological success of the electroweak
standard model (SM), the underlying mechanism of elec-
troweak symmetry breaking remains to be verified ex-
perimentally. Assuming this symmetry breaking is imple-
mented in nature by the Higgs mechanism, one of the main
goals of the next generation of collider experiments will be
the study of the Higgs sector [1]. An extended Higgs sector
is predicted for instance by the minimal supersymmetric
standard model that involves a specific 2-Higgs doublet
model (2HDM). The determination of the couplings of the
Higgs bosons makes it necessary to consider processes with
up to six or eight fermions in the final state for which a
complete calculation of radiative corrections is currently
not viable.

A useful tool to probe the symmetry breaking sector
of the SM is the Goldstone boson equivalence theorem
(ET) [2–5] that relates scattering amplitudes of longitudi-
nally polarized massive gauge bosons to that of the associ-
ated Goldstone bosons (GBs). In the heavy Higgs limit, one
can further replace internal gauge boson lines by GBs [6],
allowing one to simplify higher order calculations of heavy
Higgs effects [7].

Calculations of cross sections involving resonant Higgs
bosons require a careful treatment of the Higgs resonance,
especially since the width depends strongly on the Higgs
mass. As is well known for massive gauge bosons, the viola-
tions of gauge invariance from inconsistent prescriptions for
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finite width effects can lead to dramatic errors in the calcu-
lations of cross sections. It has been shown that fermionic
self-energy contributions can be resummed consistently [8]
if the fermionic corrections to irreducible vertices are eval-
uated at the same order of perturbation theory. For the
Higgs self-energy, however, the fermionic contributions will
be not sufficient in the mass region mH > 2mW where de-
cay into gauge bosons gives the dominant contribution to
the Higgs width. A consistent treatment of the bosonic
contributions is possible in the framework of the back-
ground field gauge [9] that requires a calculation of the
complete radiative corrections at a fixed loop order which
is presently not viable for the multi-fermion final states rel-
evant for the measurement of the Higgs boson couplings.
While a dependence on the quantum gauge parameter re-
mains, in the Feynman gauge the background field gauge
reproduces the results of the pinch technique [10]. Other
suggested schemes for the treatment of unstable particles
include the pole scheme [11] and the use of an effective
Lagrangian including Wilson lines [12]. Recently an ap-
proach based on collinear effective field theory has been
proposed [13] that has not yet been applied to realistic
calculations. For suggested schemes for the treatment of
the Higgs resonance see e.g. [14–18].

The compatibility of the Dyson summation of the Higgs
propagator with the equivalence theorem has been dis-
cussed by Valencia and Willenbrock [14]. Since the ET
holds order by order in perturbation theory while the Dyson
summation mixes different orders, one cannot expect that
the ET holds in a “naive” way when finite widths are
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introduced. Indeed, as has been demonstrated in [14], a
careful treatment of vertex corrections and non-resonant
contributions is necessary to establish the ET in the Higgs
resonance region. It was conjectured in [14] that the sit-
uation is simpler in a non-linear parameterization of the
SM [19] and a “naive” version of the ET is satisfied i.e.
the gauge boson and the Goldstone boson amplitude agree
manifestly, also after introduction of a finite Higgs width
and without taking vertex corrections into account. It
is plausible that such a simplification occurs in a non-
linear parameterization where the Higgs boson transforms
trivially under gauge transformations and Becchi–Rouet–
Stora–Tuytin (BRST) transformations, allowing to con-
struct effective field theories without [19] or with a non-
standard Higgs boson [20, 21]. Thus one can expect that
Feynman diagrams involving Higgs bosons can be consis-
tently treated separately from those without Higgs bosons.
Indeed, using the “gauge flip” formalism for the construc-
tion of gauge invariant classes (GICs) of tree-level Feynman
diagrams [22], a classification of GICs of tree-level diagrams
in the non-linearly parameterized SM (NL-SM) in terms of
the number of internal Higgs bosons has been given in [23].

In a non-linear parameterization, such a decomposition
of the amplitude need not respect the good high energy
behaviour implied by partial wave unitarity, despite be-
ing gauge invariant. Also the applicability of the ET is
limited [5] compared to linear parameterizations. Never-
theless, disentangling the Higgs diagrams from the more
involved gauge boson contributions and using the ET to
work with the simpler GB amplitudes allows for a more
transparent discussion of the unitarity violations induced
by a finite Higgs width. This has been used in [15] to obtain
a simple prescription for the Higgs propagator including a
running width without violating unitarity in gauge boson
scattering. Such a prescription is applicable in tree-level
calculations and can be implemented in computer programs
for the generation of scattering matrix elements. The pre-
scription of [15] has also proven useful to obtain unitarity
bounds on couplings of a non-standard Higgs boson [21].

In this note, we revisit the properties of Higgs prop-
agators in non-linearly parameterized scalar sectors, pro-
viding a first example for the conjectured extension of the
“flip” formalism to loop diagrams [22]. While a formal
proof of this formalism on the one loop level will be given
elsewhere [24, 25], in this note we use it as an intuitive
tool and give direct proofs for the properties suggested by
this formalism.

In Sect. 2 we review the formalism of flips and its ex-
tension to loop diagrams [24, 25]. Applied to the Higgs
resonance in the NL-SM, the flip formalism is consistent
with the conjecture of [14] and, in addition, with gauge pa-
rameter independence of the Higgs propagator. In Sect. 3
we discuss the ET in the NL-SM and the high energy be-
haviour of indvividual GICs. In Sect. 4 we give a formal
proof and a one loop example for gauge parameter inde-
pendence of the Higgs propagator in the NL-SM, including
a discussion of H–Z mixing induced by CP -violation. In
Sect. 5 we extend our analysis to a non-linear parameteri-
zation of the 2HDM [28]. We show that a consistent Dyson

summation can only be performed for the neutral Higgs
bosons, including the CP -odd scalar while it is inconsistent
for the charged Higgs bosons. We give an explicit exam-
ple for the violation of the naive ET by the width of the
charged Higgs bosons.

2 Flips, groves and the Higgs resonance

2.1 Gauge invariant classes of tree diagrams

Let us briefly review the formalism of [22] for the deter-
mination of GICs of tree diagrams and the application to
non-linearly parameterized scalar sectors [23], before we
describe its extension to loop diagrams and implications
for the description of the Higgs resonance in Sect. 2.2. GICs
are defined as subsets of Feynman diagrams contributing
to a scattering matrix element that satisfy the appropriate
Ward identities (WIs) by themselves and are gauge pa-
rameter independent. GICs can also be defined for Green’s
functions with off-shell particles [23] but the relevant def-
inition involving the Slavnov–Taylor identities (STIs) is
rather technical and will not be reproduced here.

In [22] it has been realized that the problem of con-
structing GICs of tree diagrams can be solved recursively
by considering minimal sets of 4-point sub-diagrams that
satisfy the appropriate WIs. In an unbroken gauge theory
they are given by

G4,2F =


 , ,


 , (1a)

G4 =


 , , ,


 .

(1b)

The construction of GICs is based on defining elemen-
tary “gauge flips” as exchanges of diagrams in these sets.
Gauge flips among larger diagrams are defined by apply-
ing elementary flips to sub-diagrams. For instance, the five
point diagrams

⇔ ⇔

⇔ ⇔ (2)

are connected by elementary gauge flips, as denoted by a
double arrow. This procedure of “flipping” gauge bosons
through diagrams is in fact a formalization of the prescrip-
tion to insert a gauge boson at all possible places into a
diagram, familiar from the diagrammatic proof of the WI
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in QED. It should be noted, however, that the gauge flips
have to be applied both to external and internal gauge
bosons present in Feynman diagrams. A set of diagrams
like (2) that is closed under the application of flips – i.e.
all diagrams in the set are connected by gauge flips and no
diagram outside the set can be obtained by a gauge flip –
is called a “grove”. As was shown in [22], groves are the
minimal GICs of tree diagrams. Examples for the structure
of groves in the electroweak SM can be found in [22,23].

To apply the flip formalism to the Higgs resonance, we
need the correct form of the gauge flips in spontaneously
broken gauge theories. If the scalar sector of the SM is
parameterized linearly, it turns out that Higgs boson ex-
change diagrams have to be included in the gauge flips in
addition to (1) while they can be omitted in a non-linear
parameterization [23]. Therefore a flip




, ,
�




⇔
�

(3)

is absent in the NL-SM but has to be included in a linear
parameterization. Here and in the following, plain lines
denote arbitrary particles. We take it as understood that
in an Rξ gauge the appropriate diagrams with internal
GBs have to be included in addition. The complete list of
elementary gauge flips in non-linear parameterizations of
general Higgs sectors can be found in [23]. We will give
some details on the formal reason for this simplification of
the gauge flips at the end of this subsection. The absence
of the flip (3) leads to the emergence of additional GICs in
the NL-SM that can be classified according to the number
of internal Higgs bosons [23]. This property will also be
proven using a different formalism in Sect. 3 where it is
used to proof the simplification of the ET observed in [14].

As an example for the decomposition of an amplitude
into groves, consider the tree-level diagrams contributing
to the process e+e− → b̄bZ when the Higgs coupling to
the electrons is set to zero. In the NL-SM they fall into
three groves:
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(4b)

GH =
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. (4c)

In a linear parameterization, there is a flip connecting the
“Higgsstrahlung” diagram GH to the diagrams in Gt, so
only two groves remain.

In order to be able to obtain the gauge flips in the
2HDM in Sect. 5, we have to review the formal reason for
the simplification of the gauge flips in non-linear param-
eterizations. In a spontaneous broken gauge theory in Rξ

gauge, the diagrams that have to be taken into account
in the definition of the elementary gauge flips are deter-
mined by the requirement that all corresponding four point
diagrams with external GBs also satisfy the appropriate
WIs [23]. The tree-level Higgs interaction vertex functions
in the NL-SM satisfy the simple WIs (here Va = W±, Z
and φa are the associated GBs)

ipaµΓµν
VaVbH + mVaΓ ν

φaVbH = 0 , (5a)

ipaµΓµ
VaφbH + mVaΓφaφbH = 0 . (5b)

For a formal derivation of these identities and our nota-
tion used for vertex functions see Appendix A.1. Since the
identities (5) do not require the Higgs to be on shell, they
imply that the Higgs exchange diagram in (3) and the cor-
responding diagram with one external GB satisfy a WI by
themselves. Therefore the gauge flip (3) can be omitted
in the NL-SM. In a linear parameterization, there are ad-
ditional terms contributing to (5) and the flip (3) cannot
be omitted.

2.2 Groves of loop diagrams and application
to the Higgs resonance

The action of gauge flips can be extended to loop dia-
grams [24], taking into account that the external legs of 4-
point sub-diagrams can be connected to form a closed loop.
A computer program, mangroves, for the determination of
groves of loop diagrams is currently in preparation [24]. It
is plausible to conjecture [22] that the groves obtained in
this way are the minimal GICs of loop diagrams, since one
does not expect that for loop diagrams a finer partitioning
of the amplitude into GICs will be possible than at tree
level. Here we do not attempt a formal proof [25] but take
the attitude that groves are sensible candidates for mini-
mal GICs of loop diagrams. As an example of a grove of
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loop diagrams, consider the one loop quark gluon vertex in
QCD where the application of the flips (1) results in the set
of diagrams (we take it as understood that the appropriate
ghost contributions have to be included in addition)

⇔




, ,

, .




(6)

The diagrams in (6) should be considered as part of a
larger diagram, so in general it will be necessary to “flip”
the gauge boson lines further through the complete dia-
gram. Since there is no flip connecting the vertex correction
to the fermion-loop diagrams contributing to the vacuum
polarization, these diagrams form a separate grove. There-
fore in this example the flip formalism is consistent with
the fermion-loop scheme [8].

Applying the flip formalism to the Higgs resonance, we
immediately find that the Higgs self-energy and the vertex
corrections are not connected by gauge flips in the NL-SM
because the Higgs exchange diagrams are not included in
the elementary gauge flips (3):

� . (7)

This property is independent of the external particles at-
tached to the Higgs propagators. Similarly, there are no flips
to irreducible higher order contributions to the self-energy:

� . (8)

Provided the identification of groves with minimal GICs
holds for loop diagrams, the results of the flip formalism
therefore indicate that a resummation of the self-energy
insertions without including vertex corrections or higher
order contributions to the self-energy does not violate WIs
or gauge parameter independence. Since the ET is a con-
sequence of the WIs and the kinematical properties of the
longitudinal gauge boson polarization vector, this is con-
sistent with the conjecture of [14]. In contrast, the gauge
flip (3) has to be included in a linear parameterization
so that vertex corrections and irreducible contributions to
the self-energy consistently have to be considered at the

same loop order. The gauge parameter independence of the
Higgs propagator has not been discussed in [14] and will
be treated in more detail in Sect. 4.

3 Goldstone boson equivalence theorem
and the Higgs resonance

Using the formalism of gauge flips, we have motivated that
the Dyson summation of the Higgs resonance in the NL-SM
does not violate WIs or the Goldstone boson equivalence
theorem, in agreement with the conjecture of [14]. Before
providing a general proof in Sect. 3.2, we give an explicit
example for the ET in the NL-SM and discuss the high
energy behaviour of GICs in non-linear parameterizations.

3.1 Equivalence theorem and unitarity: an example

As example for the ET in a non-linear parameterization,
we consider top production by vector boson fusion [27],
following the discussion of vector boson scattering in [14,
15]. This example has also been discussed in [4] for the
heavy Higgs limit in a linear parameterization, and an
effective field theory analysis of effects of a non-standard
Higgs boson has been given in [21]. According to the flip
formalism, in the NL-SM there are two separately gauge
invariant sets of diagrams
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(9)

As we will now show, the ET holds separately for both
classes of diagrams. As a caveat, the additional GICs in the
NL-SM do not necessarily have a good high energy behavior
taken by themselves since in non-linear parameterizations
tree-level unitarity is not a consequence of gauge invari-
ance. According to [26], the only theories of massive vector
bosons respecting tree-level unitarity – i.e. the requirement
that the tree-level matrix elements for N -particle scatter-
ing amplitudes at high energies scale at most as E4−N

– are equivalent to linearly parameterized spontaneously
broken gauge theories. In the NL-SM with standard Higgs
couplings, reparameterization invariance of the S matrix
implies that the complete set of diagrams satisfies the tree-
level unitarity bound, so the classes of diagrams that show
good high energy behavior will in general be the same in
both parameterizations. This will become apparent in the
example below.
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In the NL-SM, the Higgs–gauge boson and Higgs–GB
vertices arise from the operator

1
2

vHtr[(DµU)†DµU ] (10)

=
g

mW
H(∂µφ+ + mW W+,µ)(∂µφ− + mW W−

µ ) + . . .

that includes also a similar term involving the Z and φ0

bosons and terms of higher order of the GBs not shown here.
Here we have defined U = exp

(
i φ·σ

v

)
and the covariant

derivative is givenbyDµU = ∂µU+igW i
µ

σi

2 U−ig′UB σ3

2 . It
can be checked that the vertices obtained from (10) satisfy
the WIs (5). Since the operator (10) is gauge invariant
by itself, in an effective field theory approach to a non-
standard Higgs [20], it can be included with an arbitrary
coefficient. The Yukawa couplings arise from the operators

LY = −Q̄LU

[
(mt + mb)

2
+

(mt −mb)
2

σ3
]

QR (11)

−HQ̄LU

[
(λt + λb)

2
+

(λt − λb)
2

σ3
]

QR + h.c. ,

where gauge invariance allows for Higgs–Yukawa couplings
λt,b not related to the fermion masses mt,b. Neglecting the
bottom mass, the relevant interaction terms are given by

LY = − imt√
2v

φ+t̄

(
1− γ5

2

)
b +

imt√
2v

φ−b̄

(
1 + γ5

2

)
t

−λtHt̄t +
mt

v2 φ+φ−t̄t + . . . . (12)

We will use the ET to calculate the contributions that grow
with the energy and potentially can violate the unitarity
bound, i.e. we calculate the diagrams for φ+φ− → tt̄ in the
limit mW → 0 with v = 2mW

g = const. while keeping the
top mass fixed. While the t-channel diagram shows no dan-
gerous high energy behavior, the Higgs exchange diagram
and the contact diagram from the interaction quadratic in
the GBs in (12) grow linearly with the energy1:

��

��

��

�

+
�

��

��

��

�

= i
( mt

v2

)
t̄t

[
1−

(
λtv

mt

)
s

s−m2
H + i Im ΠH(s)

]
(13)

where we have used the Dyson summation to introduce the
imaginary part of the Higgs self-energy ΠH into the propa-
gator. As can be checked using the Feynman rules obtained
from (10), the Higgs exchange diagram is reproduced by
the corresponding diagram with external longitudinal W

1 Recall that the spinors t scale with
√

E.

bosons in the limit where the gauge boson mass is sent to
zero. The contact diagram is reproduced from the t-channel
diagram and the s-channel Z/γ exchange diagrams after a
non-trivial cancellation of terms growing like E2 [4]. There-
fore this diagram is connected to the grove Gg in (9) by
the ET. This shows that, in agreement with the expecta-
tion from the flip formalism, in the NL-SM the ET holds
separately for the groves Gg and GH in (9), also for a finite
width. However, to obtain good high energy behavior, all
diagrams from both Gg and GH have to be considered.
Furthermore, only for the SM value of the Higgs–Yukawa
coupling λt = mt

v and a vanishing width both diagrams add
up to an amplitude with good high energy behavior pro-
portional to m2

H

s−m2
H

. In an effective field theory approach,
unitarity up to the cutoff of the effective theory implies
bounds on the non-standard couplings [21] like λt.

In a linear parameterization, the contact diagram ap-
pearing in (13) is absent while in the numerator of the Higgs
exchange diagram s is replaced by m2

H so for a vanishing
width the same result for the GB amplitude is obtained
as in the NL-SM without cancellation among diagrams.
However, the GB amplitude agrees with the one for the
longitudinal gauge bosons only for a vanishing width, so
the Dyson summation is incompatible with the naive ET
in the linear parameterization.

Since the imaginary part of the gauge boson contribu-
tions to the Higgs self-energy is proportional to s2 [15], the
result (13) violates the unitarity bound when a realistic
expression for ΠH is inserted. To include a running width
without violating unitarity in the NL-SM, a modified Higgs
propagator [15]

DH(q2)→ i(1 + iγH)
q2 −m2

H + iγHq2 with γH = ΓH/MHθ(q2)

(14)

has been proposed in the context of gauge boson scattering
(for a generalization beyond leading order see [18]). For the
SM value of λt, using this form of the propagator allows for
the cancellation between the Higgs exchange diagram and
the contact diagram to take place in (13) and one obtains
an amplitude proportional to m2

H

s(1+iγH)−m2
H

. Therefore good
high energy behavior is restored also for a running width.
This has to be compared to the case of the W boson,
where the introduction of a running width [29] similar
to (14) is in general incompatible with gauge invariance
unless all radiative corrections are included in the same
order, resulting in possibly large numerical errors in certain
regions of phase space [8]. In a linear parameterization, also
the propagator (14) is not compatible with the naive ET.

To summarize, in a non-linear parameterization there
are additional GICs compared to a linear one that satisfy
the ET by themselves, also for a finite width of the Higgs
boson. However, the classes of diagrams that are gauge in-
variant and show good high energy behavior will in general
be the same in both parameterizations.
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3.2 Compatibility of the ET with Dyson summation:
general discussion

After this example, we proceed to a general proof of the con-
sistency of the Dyson summation of the Higgs propagator
in the NL-SM and discuss the relation to the conjectured
simplification of the ET [14] in more detail. To be pre-
cise, in [14] it has been suggested that matrix elements can
contain external Higgs bosons off their mass shell without
violating the ET, provided a non-linear parameterization
is used. This property is in fact a straightforward conse-
quence of the trivial BRST transformation δBRSTH = 0
of the Higgs in the NL-SM. Recall that the derivation of
the ET requires the WIs for amplitudes with insertions of
the operator (ipµV µ

a +mVaφa) [2]. In the BRST formalism,
they are derived using the Kugo–Ojima condition that the
BRST charge Q annihilates physical states. This results in
STIs of the form

0 = 〈out|T [{Q, c̄aBb . . . Bn}] |in〉
= 〈out|T [Ba . . . Bn] |in〉 , (15)

where Ba is the Nakanishi–Lautrup auxiliary field obtained
from the BRST transformation of an antighost c̄a. We use
a linear Rξ gauge fixing also in the non-linear parameter-
ization, so that the equation of motion of Ba is given by
Ba = − 1

ξ (∂µVa − ξmVaφa) as in the linear parameteriza-
tion. In the NL-SM, the trivial BRST transformation of
the Higgs implies that similar identities are true also if
additional Higgs boson field operators are inserted in the
Green’s functions:

0 = 〈out|T [{Q, c̄aBb . . . BnH . . . H}] |in〉
= 〈out|T [Ba . . . BnH . . . H] |in〉 . (16)

In a linear parameterization, the BRST transformation
δBRSTH = g

2 (c+φ−+c−φ+)+ g
2 cos θW

cZφ0 mixes the Higgs
with the GBs so there are additional terms on the right
hand side of (16).

The WIs (16) allow in the usual way [2,5] to deduce the
validity of the ET also for matrix elements with external
off-shell Higgs bosons H�, in agreement with the conjecture
of [14]:

M(in→ out + V L
a . . . V L

n H∗ . . . H∗)

= (−i)nM(in→ out + φa . . . φnH∗ . . . H∗)

+O
( mV

E
− suppressed

)
, (17)

where one phase of (−i) occurs for every outgoing longitu-
dinal gauge boson V L (for incoming gauge bosons, the sign
of the phase has to be changed) and we have suppressed
renormalization factors [3]. While in a renormalizable the-
ory and for external on-shell Higgs bosons, the additional
contributions on the right hand side are of order O

(
mV

E

)
and the GB amplitude is bounded at large energies, in a
non-linearly parameterized effective field theory, the ad-
ditional contributions are suppressed only relative to the
GB amplitude [5] that need not show good high energy

behaviour. To assess the usefulness of the ET in a given
situation, the absolute value of the additional terms has
to be estimated for the process and the energy range of
interest [5]. We always take it as understood that the ET
in a non-linearly parameterized theory holds in this re-
stricted sense.

We now demonstrate that (17) already implies also
the validity of the ET for internal off-shell Higgs bosons,
also when a Dyson resummed propagator is used. To show
this, we give a diagrammatic prescription to express the
complete amplitude in terms of matrix elements with off-
shell Higgs bosons and all other particles on the mass shell.
Consider the set of diagrams that has in commonan internal
Higgs boson line (that is not part of a closed loop) with a
given momentum pH , labeling the external momenta such
that−(p1+. . .+pi) = pH = pi+1+. . .+pn and treating all
momenta as incoming. This set of diagrams can be written
in the factorized form

��

�

�

�

��

��

�

�

�

����

��

= M(Ψ1 . . . ΨiH
∗) DH(pH)M(H∗Ψi+1 . . . Ψn) (18)

We have depicted the case of a s-channel Higgs boson, but
a similar decomposition holds for t- or u-channel Higgs
lines. If the complete amplitude is evaluated at a given
loop order, the decomposition (18) has to be understood
as consistently expanded up to this order. Iterating the
decomposition (18) by applying the same formula to the
sub-amplitudes2 we arrive at a decomposition of the am-
plitude in terms of matrix elements with off-shell Higgs
bosons and all other external particles on the mass shell.
When applied to arbitrary internal particles off the mass
shell, the individual terms of such a decomposition are in
general not gauge invariant by themselves. For the case of
Higgs bosons in the NL-SM, however, the sub-amplitudes
occurring in (18) are precisely the quantities satisfying the
ET for off-shell Higgs bosons (17). As a consequence, the
contributions to the S-matrix with internal Higgs boson
lines with a given set of momenta satisfy the ET by them-
selves. Since this property is independent of the expression
used for the Higgs propagators DH in (18), we can use
the Dyson resummed propagator or a simple effective pre-
scription like (14) without violating WIs or the ET. As
in the example of Sect. 3.1, the subsets of diagrams with
internal Higgs bosons need not respect unitarity bounds.
Nevertheless, the separate gauge invariance can be useful
for the discussion of simple schemes to restore unitarity.

2 There is a subtlety in avoiding double counting of diagrams.
For instance, first applying (18) to a Higgs boson line with
some momentum pH1 and subsequently factorizing another
momentum pH2 out of a sub-amplitude yields contributions
that appear also when the contribution of pH2 is factorized
first. Such contributions generated more than once have to
be omitted.
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In addition to the simple WIs (16), the trivial BRST
transformation law of the Higgs boson implies the gauge
parameter independence of Green’s functions with off-shell
Higgs bosons, if all other external particles are on shell. As
reviewed briefly in Appendix A.2, in the BRST formalism
the gauge parameter dependence of Green’s functions can
be expressed in terms of Green’s functions with insertions
of the BRST transformed fields, cf. (66). From this, one
obtains immediately

∂ξ 〈out|T [H . . . H] |in〉 = 0 . (19)

By the same reasoning as above, this implies gauge pa-
rameter independence of subsets of diagrams with a given
set of momenta of internal Higgs lines, independent of the
prescription used for the Higgs propagator (provided it is
gauge parameter independent by itself). Incidently, these
results give an independent derivation of the classification
of GICs in the NL-SM in terms of the number of internal
Higgs boson lines derived in [23] using the flip formalism.

4 Properties of the Higgs self-energy
in the non-linear parameterization

Apart from the consistency of the Dyson summation with
the ET, another result motivated by the flip formalism in
Sect. 2 is the gauge parameter independence of the Higgs
propagator in the NL-SM:

∂ξ 〈0 |T [H(x)H(y)]| 0〉 = 0 . (20)

In fact, this is merely a special case of the gauge param-
eter independence of matrix elements with off-shell Higgs
bosons (19). In a linear parameterization, (20) is violated
because the BRST transformation of the Higgs field is
non-trivial (see (66) and the remarks below (16)). In the
presence of CP -violating mixing with the gauge boson sec-
tor, the full Higgs propagator includes contributions from
the Z and GB propagators [30]:

〈0 |T [H(x)H(y)]| 0〉 =

���

+
�

��� ���

+
�

��� ���

+
��

���� ����

+ . . . . (21)

Therefore the gauge parameter independence of the full
propagator (20) will in general be a consequence of cancel-
lations among the different contributions, and the Higgs
self-energy by itself can be gauge parameter dependent.
This will be discussed from the perspective of the flip for-
malism below.

But first, let us demonstrate explicitly the cancellation
of the gauge parameter in the one loop gauge boson contri-
bution to the Higgs propagator. We decompose the gauge

boson propagator in Rξ gauge into the propagator in uni-
tarity gauge and a term proportional to the GB propagator,
introducing the graphical notation

= +

Dµν
W,ξ(q) =

−i
(
gµν − qµqν

m2
W

)
q2 −m2

W

+
(
− qµqν

m2
W

)
i

q2 − ξm2
W

.

(22)
Because of the trivial BRST transformation, there are no
ghost–Higgs vertices so we only have to consider the gauge
boson and GB loops. The peculiar form of the interaction
lagrangian (10) ensures that the contributions with one
unphysical pole add up to zero:

�

�

�� �

= (igmW )2
∫

d4k
−i

(
gµν − kµkν

m2
W

)
k2 −m2

W

×
(
−i

(p + k)µ(p + k)ν

m2
W ((p + k)2 − ξm2

W )

)
, (23a)

�

�

�� �

= g2
∫

d4k (p + k)µ

−i
(
gµν − kµkν

m2
W

)
k2 −m2

W

× i
(p + k)2 − ξm2

W

(−(p + k)ν) . (23b)

In the second diagram, one minus sign arises because the
gauge boson momentum is incoming at one vertex and
outgoing at the other. One can show similarly that the
contributions with two unphysical poles add up to zero. In
contrast, in the linear parameterization the HΦW vertex
has the form g

2 W±,µH
←→
∂µφ∓ and the cancellation does not

go through as in (23), so the gauge boson contribution is
gauge parameter dependent [17].

In the presence of Higgs–Z mixing, gauge parameter
independence of the Higgs propagator does not already
imply gauge parameter independence of the Higgs self-
energy to all orders. As shown in Appendix A.2 using the
formalism of [31, 32], in the presence of CP -violation the
gauge parameter dependence of the Higgs self-energy takes
the form

∂ξΓHH = 2Λφ0HΓφ0H + 2ΛZH,µΓµ
ZH , (24)

where Λφ0H and ΛZH are vertex functions with insertions
of the gauge parameter dependent part of the gauge fixing
functional (see Appendix A.2 for the precise expressions).
In the SM this mixing is phenomenologically not important
since it is induced by CP -violating effects only at the three
loop level, but the phenomenon will persist in CP -violating
extensions of the SM. The discussion is also relevant for
the CP -odd scalar A in the 2HDM discussed in Sect. 5.
The reason why CP -violating Higgs–Z mixing introduces
additional complications can also be understood directly
on the level of gauge flips. Once ZH mixing is generated
radiatively as in the minimal SM by an insertion of a box
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diagram [30], there is a gauge flip to vertex correction di-
agrams:

�
�

�
�

�

�
�

�

�

�
�

� ⇔
�
�

�

�

�

�
�

�

�

�
�
�

�

⇔
�
��

�

�

�
�

�

�

�

�
�

. (25)

Since the full resummed Higgs propagator (21) includes also
contributions from Higgs–Z mixing, similar flips connect
the irreducible Higgs self-energy to reducible diagrams with
Higgs–Z mixing (compare to (8)), so once CP -violation
occurs, the Higgs self-energy is not expected to be gauge
parameter independent by itself. Nevertheless, the gauge
parameter dependence must cancel between the different
irreducible two point functions since the full Higgs propa-
gator is gauge parameter independent.

To clarify this issue further, one can demonstrate the
cancellation among the various contributions by applying
the formalismof [31,32] to the full propagator (21) including
mixing. The complete treatment to all orders involves a
three by three matrix describing the mixing among Z,
φ0 and H and is beyond the scope of this note. Here we
give a simplified analysis valid in the first loop order n
where HZ mixing is non-vanishing. In this case we can
restrict ourselves to the diagrams shown in (21) and need
not consider the mixing of the Z boson with the GB φ0. The
variation of the Higgs propagator with respect to the gauge
parameter receives contributions from the gauge boson and
GB propagators and from the self-energies themselves:

∂ξD
(2n)
H = D

(0)
H

[
∂ξΓ

(2n)
HH + 2

(
∂ξΓ

(n),µ
HZ

)
D

(0)
Z,µνΓ

(n),ν
ZH

+2
(
∂ξΓ

(n)
Hφ0

)
D

(0)
φ0 Γ

(n)
φH

]
D

(0)
H

+D
(0)
H

[
Γ

(n),µ
HZ (∂ξD

(0)
Z,µν)Γ (n),ν

ZH

+ Γ
(n)
Hφ0(∂ξD

(0)
φ0 )Γ (n)

φ0H

]
D

(0)
H . (26)

Here D
(2n)
H denotes the Higgs propagator up to order 2n,

where n is first order where ΓHZ is non-vanishing. In the
order considered, the propagators of the Z and φ0 are tree-
level propagators so we can use the explicit expression (22)
to verify that the terms involving the variation of the prop-
agators cancel among themselves because of the simple WI
(ipµΓµ

ZH +mZΓφ0H) = 0. To simplify the remaining terms
we use the identity (64), making the plausible assumption
that the vertex functions ΛHZ and ΛHφ0 arise only at the
same order as the mixing ΓZH . Up to this order the two
point vertex functions enter only on tree level and we obtain

∂ξΓ
(n),µ
HZ = Λ

(n)
HZ,νΓ

(0),νµ
ZZ ∂ξΓ

(n)
Hφ0 = Λ

(n)
Hφ0Γ

(0)
φ0φ0 . (27)

Since the two point vertex functions are the negative of
the inverse propagators, the gauge parameter dependence
of the mixing contributions cancels against the variation
of the Higgs self-energy (24):

∂ξD
(2n)
H

= D
(0)
H

[
∂ξΓ

(2n)
HH − 2

(
Λ

(n)
HZ,µΓ

(n),µ
ZH + Λ

(n)
Hφ0Γ

(n)
φH

)]
D

(0)
H

= 0 . (28)

Therefore the gauge parameter dependence of the full prop-
agator vanishes, in agreement with (20). To establish this
property, it is necessary to calculate the Higgs self-energy
up to the order 2n; a residual gauge dependence remains
if it is evaluated at the same order as the HZ mixing.

5 Two-Higgs doublet models

As an important example for a non-minimal Higgs sector, in
this section we discuss to which extent the results obtained
for the NL-SM carry over to a 2-Higgs doublet model. A
complication compared to the NL-SM is the appearance
of vertices involving two Higgs bosons and a gauge boson
like W+,µ(H0←→∂µH−) that can lead to a more complicated
structure of GICs [23]. As we will demonstrate below, in
the 2HDM only the neutral Higgs bosons can be treated as
in the NL-SM and their Dyson summation does not violate
gauge invariance. Our discussion is mainly phrased in the
language of gauge flips, but the formal proofs of Sects. 3
and 4 can easily be extended to the case of the neutral
Higgs bosons in the 2HDM, since the main ingredient is
the trivial BRST transformation of the neutral Higgs. We
also give an explicit example for the violation of the naive
ET by the introduction of a finite width for the charged
Higgs boson.

5.1 Non-linear parameterization of the 2HDM

We will briefly review the 2HDM in the non-linear param-
eterization introduced in [28] and determine the BRST
transformations of the Higgs bosons that are used in the
subsequent subsections to derive the STIs and the form
of the gauge flips. Following [28] we collect both scalar
doublets H1, H2 of the 2HDM in a matrix

Φ =
(
H̃2H1

)
with H̃i = iσ2H

∗
i

and 〈H1,2〉 =
(

0
v1,2

)
(29)

and introduce the non-linear parameterization Φ = UH,
where the GB matrix is again U = exp

(
i φ·σ

v

)
and the

Higgs bosons are collected in the matrix

H = H0 +
(
h + iA0 + σ ·H) (

cos β 0
0 sin β

)
(30)
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with H0 =
(

v2 0
0 v1

)
. (31)

Here the mixing angle tanβ = v2
v1

has been introduced and
we define v so that v1 = v cos β and v2 = v sin β. The mass
eigenstates of the neutral scalars are linear combinations
of h and H3 but the precise form [28] is not needed for
our discussion. More important for us are the “interaction
eigenstates” [28] H and S defined by

cos βS + sinβH = cos β
(

h+H3

2

)
, (32)

− sin βS + cos βH = sinβ
(

h−H3

2

)
, (33)

that will simplify the Feynman rules. The GB and Higgs
matrices transform under SU(2)L × U(1)Y as

Φ→ LΦR† U → LUR† H → RHR† (34)

with L = eiα· σ
2 ∈ SU(2)L and R = eiβ σ3

2 ∈ U(1)Y .
Therefore the BRST transformation of the Higgs bosons
is given by

δBRSTH = ig′c3
[

σ3

2
,H

]
, (35)

so the BRST transformations of the charged Higgs bosons
H± = 1√

2
(H1 ∓ iH2) are found to be

δBRSTH± = ±i
(

ecA − g

cos θW
sin2 θWcZ

)
H± , (36)

while the neutral Higgs bosons transform trivially. Below,
we need the Feynman rules of the Higgs bosons appearing
in the decomposition of the kinetic term

Lkin =
1
4

tr
[
(DµΦ)†

DµΦ
]

:= LH + LU + LHU , (37)

where we have defined the operators

LH =
1
4

tr
[
DµH†DµH]

, (38a)

LU =
1
4

tr
[(

DµU†) (DµU)H†H]
, (38b)

LHU =
1
4

(
tr

[(
U†DµU

) (HDµH†)] + h.c.
)

. (38c)

Here the transformation law (34) implies the action of the
covariant derivative onH as DµH = ∂µH− ig′Bµ

[
σ3

2 ,H
]
.

Note that the operators in (38) are gauge invariant by them-
selves. Therefore, in an effective field theory approach to
the 2HDM, the operator LHU can appear with an arbitrary
coefficient λHU while the coefficients of the other two oper-
ators are fixed by the normalization of the kinetic terms3.

3 For simplicity, here we do not consider the introduction of
another kinetic term for the GBs of the form tr[(DµU)†DµU ]
that would allow for a non-standard coefficient of LU .

The cubic interaction terms obtained from the expansion
of (38) will be written as

LΦ3 =
∑

ΦiΦjΦk

(
OH

ΦiΦjΦk
+OU

ΦiΦjΦk
+ λHUOHU

ΦiΦjΦk

)
,

(39)
where the fields Φ include the gauge bosons, Higgs bosons
and GBs. Here the operators OH

ΦiΦjΦk
arise from the ex-

pansion of LH and analogously for OU
ΦiΦjΦk

and OHU
ΦiΦjΦk

.

5.2 Neutral Higgs bosons

We now discuss the form of the gauge flips involving neutral
Higgs bosons and the consequences for the GICs and the
Dyson summation of the Higgs propagators. The charged
Higgs bosons are discussed in Sect. 5.3.Thediscussion of the
neutral scalars is simpler in terms of the two interaction
eigenstates defined in (32). As can be verified from the
Feynman rules arising from LU , the interaction eigenstate
H has the same interactions with the gauge bosons as the
Higgs in the NL-SM (10), while all other scalars have no
interactions of the form HVµV µ [28]. In the language of
the flip formalism, this implies that the flips of the form (3)
have to be chosen just like in the NL-SM, and the internal
Higgs boson H can be omitted.

We now turn to the additional HHV vertices in the
2HDM. One finds that the only vertices of this kind in-
volving neutral Higgs bosons are contained in the operator
LHU defined in (38) and involve only the second interaction
eigenstate S and the CP -odd scalar A0:

OHU
W+H−H0 :=

1√
2v

(
∂µφ+ + mW W+,µ

)
(40)

×
[

1
2

(
A0←→∂µH−

)
+ i

(
S
←→
∂µH−

)]
+ h.c.

OHU
ZSA0 :=

1
v

(∂µφ0 + mZZµ)
(
S
←→
∂µA0

)
, (41)

with φ1
←→
∂µφ2 = φ1∂µφ2−(∂µφ1)φ2. As a consequence of the

trivial BRST transformations, one obtains trivial tree-level
WIs as long as a neutral Higgs is involved:

ipW,µΓµ
W ±H∓S(pW , k∓, kS)

+mW Γφ±H∓S(pW , k∓, kS) = 0 , (42)

ipZ,µΓµ
ZA0S(pZ , kA, kS)

+mZΓφ0A0S(pW , kA, kS) = 0 . (43)

Again, these WIs can be checked using the explicit form
of the vertices (40). In the context of the flip formalism,
the trivial WIs (43) imply the absence of the gauge flips
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(44)

Thus internal neutral Higgs bosons do not appear in the
gauge flips, and therefore can be treated exactly like the
SM Higgs in a non-linear parameterization. This suggests
the validity of the naive ET and the gauge parameter inde-
pendence of the propagators of the neutral scalars, like in
the NL-SM. On a formal level, similarly to the discussion
in Sects. 3 and 4, these properties are indeed a consequence
of the trivial BRST transformations.

The gauge parameter dependence of the self-energies
of the neutral Higgs bosons is governed by an identity of
the same form as (24), also for mixed two point functions:

∂ξΓH0
i H0

j
= Λφ0H0

i
Γφ0H0

j
+ Λµ

ZH0
i
ΓZH0

j ,µ + (i↔ j) , (45)

where H0
i ∈ {H, S, A0}. Thus the self-energies can become

gauge parameter dependent only if gauge–Higgs mixing
occurs. This can affect the CP -odd scalar A0 already on
the one loop level. In contrast, mixing of CP -even and CP -
odd Higgs bosons will induce no further gauge parameter
dependence since no mixed two point functions like ΓHA

appear on the right hand side of (45).

5.3 Charged Higgs bosons

While the situation for neutral Higgs bosons resembles that
in the NL-SM, the non-trivial BRST transformation of the
charged Higgs bosons (36) implies that they have to be
treated similar as in a linear parameterization. The BRST
transformation (36) implies a non-trivial tree-level STI for
the ZH−H+ vertex:

ipZ,µΓµ
ZH+H−(pZ , k+, k−) + mZΓφ0H+H−(pZ , k+, k−)

= i
g

cos θW
sin2 θW

[
D−1

H+H−(k+)−D−1
H+H−(k−)

]
.(46)

The STI for the γH+H− vertex is similar. One contribution
to the ZH+H− vertex arises from the operator LHU :

OHU
ZH+H− :=

i
v

(∂µφ0 + mZZµ)
(
H+←→∂µH−

)
. (47a)

The corresponding Feynman rule arising from this operator
satisfies a trivial tree-level WI, i.e. it does not contribute
to the right hand side of (46). This reflects the separate
gauge invariance of the operator LHU that can appear
with an arbitrary coefficient λHU . However, there is another
contribution to the ZH+H− vertex from the kinetic term of
the Higgs bosons LH, so its coefficient is fixed in agreement
with the STI (46):

OH
V H+H− := i

(
H+←→∂µH−

) (
eAµ − g

cos θW
sin2 θWZµ

)
.

(47b)

Because of the non-trivial STI (46), diagrams with inter-
nal charged Higgs bosons must be included in the gauge
flips. For example, the flips for sub-amplitudes including
2-fermion, charged Higgs bosons and neutral gauge bosons
are given by

G̃4,1H±2F

=
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(48)

both in the linear and the non-linear parameterization.
As a consequence, there is a flip connecting self-energies

and vertex corrections, as can be seen in the example of
the coupling of a charged Higgs boson to b and t quarks:

�

��

�
�

�

�
�
�
�

⇔
� �

�

��

�� �
�
�

. (49)

Also, there are flips to irreducible higher loop contributions
to the self-energy:

�
�

�
�

�
�

⇔
�
�

�
�

. (50)

This indicates that charged Higgs bosons in the 2HDM
cannot be resummed consistently, also in a non-linear pa-
rameterization. In agreement with this result, it is shown
in Appendix A.2 that the self-energy of the charged Hig-
gses is in general gauge parameter dependent, also without
taking mixing with the gauge sector into account.

One also expects that the naive version of the ET is
violated for intermediate charged Higgs bosons, i.e. for a
finite width of the charged Higgs the gauge boson ampli-
tudes and the GB amplitudes do not agree manifestly. As
an explicit example, consider the process Z → tb̄H− that
appears as subprocess for associated production of charged
Higgs bosons at linear colliders. In the non-linear 2HDM,
Yukawa couplings can be obtained from the operator

LY = −Q̄LUH
[

(λt + λb)
2

+
(λt − λb)

2
σ3

]
QR + h.c.

(51)
with mb = λbv1 = λbv cos β and mt = λtv2 = λtv sin β.
The choice (51) corresponds to the so called type
II 2HDM [1]. From an effective field theory perspective,
an additional term involving only the GB matrix can be
added to (51), as in the first term of (11). The effects
of such non-standard Yukawa couplings on unitarity have
been discussed in Sect. 3 and will not be considered in the
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following. The resulting Yukawa couplings of the charged
Higgs bosons are

LY H± = −
√

2
v

(
1 + i

φ0

v

)

×
[
t̄H+

(
mb tanβ

(
1 + γ5

2

)
+ mt cot β

(
1− γ5

2

))
b

]

+h.c. + . . . . (52)

In the computation of the diagrams, we consider again
the limit4 mb, mZ → 0. We will also include an arbitrary
coefficient λHU as a factor in front of (47a). Similar to
the example of top pair production in Sect. 3, the only
GB diagrams with dangerous high energy behavior are
the Higgs exchange and the contact diagram. Using the
Feynman rules from (47a) and (52) we obtain
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��

�

��

+
��

��

��

�

��

=
√

2mt cot β

v2

[
t̄

(
1− γ5

2

)
b

]
(1−

λHU
(p2

H+ − p2
H−)

p2
H+ −m2

H+ + i Im ΠH+(p2
H+)

)
(53)

In the case of a standard coefficient of (47b), i.e. λHU = 1,
the expression (53) vanishes if the external H− is on its
mass shell (p2

H− = m2
H+) and the width is set to zero5.

Since we cannot expect the ET to hold for an off-shell H−
(see below) and in order to make the cancellations among
different diagrams more transparent, in the following we
will keep λHU 
= 1.

In the example of Sect. 3.1, we were able to decompose
the amplitude into two groves that satisfied the ET by
themselves. This is not the case in the present example
and all diagrams for longitudinal gauge bosons are needed
to reproduce the GB amplitude (53), as we will show now.
The diagrams with internal fermions give an additional
term compared to the contact term in (53):
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�
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�

+
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�
�

�

4 For simplicity, we assume in addition mb tan β � mt but
this is not essential to our argument.

5 Actually, this could have been anticipated since in a linear
parameterization the coupling of a GB to two particles with
the same mass vanishes (see e.g. the second reference in [23])
so no diagram of the form (53) appears at all.

= − ig
√

2mt cot β

v cos θWmZ

(
1
2
− sin2 θW

) [
t̄

(
1− γ5

2

)
b

]
+ . . .

(54)

where we have suppressed the terms corresponding to the
GB diagrams with internal fermion lines we have omit-
ted above. The Higgs exchange diagram gives, using the
Feynman rules obtained from both operators (47)
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= − ig
√

2mt cot β

v cos θWmZ

(
sin2 θW − λHU

2

)

[
t̄

(
1− γ5

2

)
b

] (
p2

H+ − p2
H−

)
p2

H+ −m2
H+ + i Im ΠH+

(
p2

H+

) (55)

Only for a vanishing width and H− on the mass shell, the
terms proportional to sin2 θW cancel between (54) and (55)
and the GB amplitude (53) is reproduced (up to a phase).
Therefore the situation for the charged Higgs in the non-
linear parameterization is similar to a linear parameteri-
zation, as described in Sect. 3.1, and the naive version of
the ET is not satisfied when a Dyson summation of the
charged Higgs propagator is performed. Also since the ex-
ternal charged Higgs must be on the mass shell, an ET for
off-shell Higgs bosons (17) is not valid for the charged Higgs
bosons. These results therefore confirm the expectation of
the flip formalism.

6 Summary and outlook

Motivated by the structure of gauge invariant classes of
tree diagrams in non-linear parameterizations of the scalar
sector [23] and the observations of [14] concerning effects of
the Higgs width on the Goldstone boson equivalence theo-
rem, we have revisited the properties of the Higgs resonance
in non-linear parameterizations. As we have demonstrated
for the non-linear parameterizations of both the minimal
standard model and a 2-Higgs doublet model, the Dyson
summation of propagators of neutral Higgs bosons can
be performed without violating gauge parameter indepen-
dence and Ward identities. Although in non-linear param-
eterizations care must be taken not to violate bounds from
tree unitarity, a simple unitarity restoring expression for
the Higgs propagator [15] can be used without violating
the naive equivalence theorem, in contrast to linear param-
eterizations.

Furthermore, the full Higgs propagator has been shown
to be gauge parameter independent. For the Higgs self-
energy this holds only in the absence ofCP -violatingmixing
with the gauge sector. These results are consistent with the
conjectured extension of the “gauge flip” formalism to loop
diagrams [22].

For charged Higgs bosons in a 2-Higgs doublet model,
gauge flips exist that connect resummed self-energy dia-
grams to irreducible higher order contributions to the self-
energy or to vertex corrections and a Dyson summation
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is not compatible with gauge invariance. The violation of
the naive equivalence theorem has been demonstrated for
an explicit example.

The Higgs resonance has served as a first example of
the application of the flip formalism to loop diagrams in a
case where independent methods are available to verify the
results.Asmentioned in Sect. 2, a second examplewhere the
flips reproduce results established by different methods is
the fermion-loop scheme [8]. A formal proof of the gauge flip
formalism for one loop diagrams in linear parameterizations
and applications to one loop SM processes with up to 4
fermions in the final state will be given elsewhere [24,25].
We hope the formalism will prove useful in situations where
direct proofs are difficult to achieve.
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A Slavnov-Taylor and Nielsen identities

In this appendix we give some technical details on formulae
used in the main text and set up our notation for the
functional identities resulting from gauge invariance.

A.1 Zinn-Justin identity and STIs

The derivation of STIs for irreducible vertices uses the
Zinn-Justin identity

∑
Ψ

∫
d4x

δΓ

δΨ�

δΓ

δΨ
+ Ba

δΓ

δc̄a
= 0 , (56)

where the Ψ summarize all fields in the theory and the Ψ�

are the sources of the BRST transformations included in the
effective action Γ = Γ0+

∑
Ψ

∫
d4x tr[Ψ�(δBRSΨ)]. We will

use the notation ΓΨ1...Ψn = δnΓ
δΨ1...δΨn

|Ψ=0 for the irreducible
vertex functions. From (56) we obtain the general STI for
the HV V and the HφV vertices by taking a derivative
with respect to a ghost, a Higgs field and a gauge boson
or a GB:

−
∑

Ψ=Va,φa

ΓcaΨ�ΓΨVbH (57a)

=
∑

Ψ=Va,φa,H

(ΓcaΨ�Vb
ΓΨH + ΓcaΨ�HΓΨVb

) +
i
ξ
pν

b Γcac̄bH

−
∑

Ψ=Va,φa

ΓcaΨ�ΓΨφbH (57b)

=
∑

Ψ=Va,φa,H

(ΓcaΨ�φb
ΓΨH + ΓcaΨ�HΓΨφb

) + mWa
Γcac̄bH ,

where we have used the equation of motion for the auxiliary
field B. For a non-linear transformation law of the GBs,

there are additional contributions of the form Γcφ�φφΓH

that vanish in the absence of tadpoles. In this case both
relations (57) are valid both for the linear and non-linear
parameterizations. In the non-linear parameterization the
Higgs drops out of the sums on the right hand side due
to its trivial BRST transformation so no Higgs two point
functions appear in these STIs. In higher orders, the Higgs
ghost couplings Γcac̄bH and the vertex functions Γcaφ�

b H

and ΓcaV �
b H can be generated radiatively, but they are

absent on tree level in the non-linear parameterization.
Using the linear terms in the BRST transformations of the
gauge bosons δBRSTVa = ∂µca + . . . and GBs δBRSTφa =
−mVa

ca+. . . we thus arrive at the simple tree-level WIs (5).

A.2 Gauge parameter dependence of Green’s functions
and irreducible vertices

An identity for the gauge parameter dependence of irre-
ducible vertices can be derived using an extended BRST
symmetry [31]. For simplicity, we suppress the indices dis-
tinguishing the gauge bosons in the following. Introducing
an auxiliary Grassmann variable χ allows one to give the
gauge parameters themselves a transformation law:

δBRST ξ = χ , δBRST χ = 0 . (58)

In the usual BRST formalism, the gauge fixing and ghost
Lagrangian is a BRST exact operator, i.e. it can be written
as aBRSTtransformation of a functionalΘ of ghost number
(−1). In the extended BRST formalism we get an additional
contribution from the transformation of ξ so that

δBRSTΘ = LGF +LFP +Lχ , with Lχ = χ∂ξΘ . (59)

For theusualRξ gaugefixingΘ = c̄
(
∂µV µ − ξmV φ + ξ

2 B
)

we find

Lχ =
1
2

χc̄(B − 2mV φ) = − 1
2ξ

χc̄ (∂µV µ + ξmV φ) , (60)

where in the last step we have used the equation of motion
for the auxiliary field B.

The Zinn-Justin identity resulting from the extended
BRST transformation is given by

∑
Ψ

∫
d4x

δΓ

δΨ�

δΓ

δΨ
+ B

δΓ

δc̄
+ χ∂ξΓ = 0 . (61)

Taking the derivativewith respect toχ, taking the fermionic
character into account, one obtains the so called “Nielsen
identity” [31]

∂ξΓ =
∑
Ψ

∫
d4x

δΓ

δΨ�

δΓχ

δΨ
+

δΓχ

δΨ�

δΓ

δΨ
+ B

δΓχ

δc̄
, (62)

where we have introduced the notation Γχ = ∂χΓ |χ=0. The
vertices involving insertions of χ can be evaluated using the
lagrangian (60). The renormalization conditions of physical
parameters have to be chosen appropriately so the Nielsen
identity (62) is not deformed in higher orders [32].
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As discussed in [32], imposing the vanishing of the
Higgs tadpole as renormalization condition implies ΓχH∗ =
Γχφ0∗ = 0. Taking the derivative of the Nielsen identity (62)
with respect to Z we get a relation connecting these func-
tions to ΓχZ∗ so it is also constrained to vanish:

ΓχZ∗ΓZZ + Γχφ0∗Γφ0Z + ΓχH∗ΓHZ = 0 . (63)

In the non-linear parameterization, δBRSTH = 0 implies
that there are no vertex functions involving H∗, and one
obtains for the self-energies of the neutral sector

∂ξΓHΦ = Γχφ0∗HΓφ0Φ + Γµ
χZ∗HΓZΦ,µ

+Γχφ0∗ΦΓφ0H + Γµ
χZ∗ΦΓZH,µ , (64)

with Φ ∈ {H, φ0, Z}. For the Higgs self-energy we ob-
tain (24) with ΛΦH = ΓχΦ∗H . The important thing is the
absence of terms involving the Higgs two point function on
the right hand side, while the mixing of the Higgs is due only
to CP -violation. Therefore in the absence of CP -violation
one has ∂ξΓHH = 0. In the 2HDM, a similar identity holds
for all neutral Higgs bosons (including the CP -odd) since
they transform trivially. For the self-energy of the charged
Higgs boson one has instead

∂ξΓH+H− = ΓχH+∗H−ΓH−H+ + Γχφ+∗H−Γφ−H+

+ΓχW+∗H−ΓW −
L H+ + (+↔ −) . (65)

Here the self-energy itself appears on the right hand side
and it will in general be gauge parameter dependent.

The identity governing the gauge parameter depen-
dence ofGreen’s functions can be derived from the extended
Zinn-Justin identity (61) by Legendre transformation [31]
or directly from the path integral representation of Green’s
functions. In operator language, it is given by

∂ξ 〈0 |T [Ψ1 . . . Ψn]| 0〉 = (66)

−
∑
Ψi

±
〈

0
∣∣∣∣T

[(
i
∫

d4x ∂ξΘ

)
Ψ1 . . . δBRSTΨi . . . Ψn

]∣∣∣∣ 0
〉

,

where the signs arise for fermionic fields anticommuting
with the BRST transformation. Applying the LSZ formula
to a given field in the Green’s function, the contribution
from the BRST transformed fields factorizes and can be
absorbed in the wave function renormalization so (66) is
also valid if the external vacuum states are replaced by
physical |in〉 and |out〉 states.
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